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Automatic Modulation Classification
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Objective
• Correctly predict the transmitted modulation scheme

Applications
• Automatic receiver reconfiguration

- Reduce transmission overhead due to modulation 
coordination

• Interference Mitigation
- Identify and respond to interferers uniquely

• Spectrum Management
- Automate violation notification process



Requirements

Classify typical satellite communication signals
• 𝛺 = {BPSK, QPSK, 8−PSK, 16−APSK, 32−APSK, 16−QAM, 64−QAM}

Evaluate performance with
• Various capture lengths
• AWGN, -5 to 20 dB
• Es/No approximation errors < 5 dB
• Phase and frequency offsets
• Nonlinear amplifier drive levels
• DVB-S2 pilots and headers

Assume
• Coarse carrier frequency estimation
• Symbol timing recovery
• Zero ISI, matched pulse shape filters
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Classification Method
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Cumulants
• Effective at differentiating modulation order
• Well documented in literature

Neural Networks
• Universal function approximator
• Showed increased accuracy over decision tree and SVM
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Simulation Diagram

Preprocessing
• Coarse carrier removal
• Timing recovery
• Normalization
• 𝑦 𝑛 , z[n]

𝑟(𝑡)

Cumulant  
estimators

SNR 
estimator

Neural 
Network

x[n] = symbols of 𝛺𝑖
g[n] = Gaussian noise

y[n] = 𝐴𝑒𝑗(2𝜋𝑓𝑜𝑛𝑇+𝜙)𝑥 𝑛 + 𝑔 𝑛
z[n] = 𝑦 𝑛 𝑦∗ [𝑛 − 1]
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𝑁−1 or {z[n]}𝑛=0
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Neural Network Architecture
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Feed-Forward Multilayer 
Perceptron Network

Optimizer: Adaptive Moment Estimation 
(Adam)
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What does the Neural Net see?
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Each frame: N point 
sequence in IQ

Cumulants

Constant 
phase-offset

AWGN

Frequency-
offset

Amplifier 
saturation

𝑧 𝑛 = 𝑦∗ 𝑛 − 1 𝑦[𝑛]𝑦[𝑛]



Vector Length Analysis

8

Feature vector generated from

{𝑦 𝑛 }𝑛=1
𝑁

𝑁 = {1𝑘, 2.5𝑘, 5𝑘, 10𝑘}
{𝑧 𝑛 }𝑛=1

𝑁

𝑁 = {10𝑘, 20𝑘, 40𝑘, 80𝑘}

For similar classification performance, classification 
based on {z[n]} required ~15x more symbols



Frequency Offset

9

• Frequency offset imposes 
upper bound on y[n] 
sequence length

• z[n] converts fixed frequency 
offset into fixed phase offset

• Cumulant magnitudes are 
not impacted by constant 
phase offset



Es/No Approximation Error
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• Neural net requires SNR estimation
• Imperfect estimation of SNR will 

degrade performance
• Most sensitive to error at low Es/No
• y[n] and z[n] exhibit similar responses 

to Es/No error
• Results provide accuracy requirements 

for SNR estimator



Nonlinear Amplifier
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• Previous results in literature did not 
account for nonlinear amplification

• Amplifier simulated using Saleh model 
using coefficients from operational TWTA

• PSK – only one ring, not impacted by 
amplifier

• Classification of higher order modulations 
experienced significant degradation at 
levels where a user could expect to operate

• Additional input features needed to train 
neural network over this dimension



DVB-S2 Pilots and Headers
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• Previous research has not measured impact of 
pilots/headers on classifier performance

• DVB-S2 physical layer extends alphabet of received 
symbols, due to inclusion of headers/pilots

• Unable to classify 16 APSK using z[n] at 20 dB Es/No
• Classifier performance degradation due to DVB-S2 

framing was < 5% in most cases

… …

Frame

DVB-S2 Framing Structure

𝑦 𝑛

𝑧 𝑛

𝛺𝑖 = 32 𝐴𝑃𝑆𝐾

w/o DVB-S2 w/ DVB-S2

IQ constellations of 32 APSK with and without 
DVB-S2 physical layer



Next Steps and Conclusions

Next Steps
• Investigate additional features
• Implement a SNR approximation algorithm
• Classify modulation types in lab
• Add timing acquisition and carrier removal
• Classify live signals

Conclusions
• Created modulation classifier using cumulants and a neural network
• Evaluated performance over

– Capture length
– AWGN
– Constant frequency and phase offset

• Extended previous work in field to include analysis over
– SNR approximation error
– Nonlinear amplifier distortion
– DVB-S2 physical layer effects
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Questions?
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Backup Slides
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Classification by Modulation
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Left: y[n]
Right: z[n]



Cumulant Magnitudes
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Left: y[n]
Right: z[n]



DVB-S2 Pilots and Headers, Cont.
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Probability of classifying 
modulation type with DVB-S2 
headers (H) and pilots (P)

Es/No = 20 dB

z[n] signal type




